翻訳と辞書
Words near each other
・ Riesz function
・ Riemann's minimal surface
・ Riemannian
・ Riemannian circle
・ Riemannian connection on a surface
・ Riemannian geometry
・ Riemannian manifold
・ Riemannian Penrose inequality
・ Riemannian submanifold
・ Riemannian submersion
・ Riemannian theory
・ Riemann–Hilbert correspondence
・ Riemann–Hilbert problem
・ Riemann–Hurwitz formula
・ Riemann–Lebesgue lemma
Riemann–Liouville integral
・ Riemann–Roch theorem
・ Riemann–Roch theorem for smooth manifolds
・ Riemann–Roch theorem for surfaces
・ Riemann–Siegel formula
・ Riemann–Siegel theta function
・ Riemann–Silberstein vector
・ Riemann–Stieltjes integral
・ Riemann–von Mangoldt formula
・ Riemenschneider
・ Riemenstalden
・ Riemer Calhoun
・ Riemer See
・ Riemer van der Velde
・ Riemerella anatipestifer


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Riemann–Liouville integral : ウィキペディア英語版
Riemann–Liouville integral

In mathematics, the Riemann–Liouville integral associates with a real function ''ƒ'' : R → R another function ''I''α''ƒ'' of the same kind for each value of the parameter α > 0. The integral is a manner of generalization of the repeated antiderivative of ''ƒ'' in the sense that for positive integer values of α, ''I''α''ƒ'' is an iterated antiderivative of ''ƒ'' of order α. The Riemann–Liouville integral is named for Bernhard Riemann and Joseph Liouville, the latter of whom was the first to consider the possibility of fractional calculus in 1832. The operator agrees with the Euler transform, after Leonhard Euler, when applied to analytic functions. It was generalized to arbitrary dimensions by Marcel Riesz, who introduced the Riesz potential.
==Definition==
The Riemann–Liouville integral is defined by
:I^\alpha f(x) = \frac\int_a^xf(t)(x-t)^\,dt
where Γ is the Gamma function and ''a'' is an arbitrary but fixed base point. The integral is well-defined provided ''ƒ'' is a locally integrable function, and α is a complex number in the half-plane re(α) > 0. The dependence on the base-point ''a'' is often suppressed, and represents a freedom in constant of integration. Clearly ''I''1ƒ is an antiderivative of ƒ (of first order), and for positive integer values of α, ''I''αƒ is an antiderivative of order α by Cauchy formula for repeated integration. Another notation, which emphasizes the basepoint, is
:\int_a^x f(t)(x-t)^\,dt.
This also makes sense if ''a'' = −∞, with suitable restrictions on ''ƒ''.
The fundamental relations hold
:\fracI^ f(x) = I^\alpha f(x),\quad I^\alpha(I^\beta f) = I^f,
the latter of which is a semigroup property.〔 These properties make possible not only the definition of fractional integration, but also of fractional differentiation, by taking enough derivatives of ''I''α''ƒ''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Riemann–Liouville integral」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.